Answer:
y_c = 2 + 10*x
Step-by-step explanation:
Given:
                        y'' = 0
Find:
- The solution to ODE such that y(0) = 2, y'(0) = 10
Solution:
- Assuming a solution y = Ce^(mt)
So, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â y' = C*me^(mt)
                  y'' = C*m^2e^(mt)
- Back substitute into given ODE, we get:
                  y'' = C*m^2e^(mt) = 0
                  e^(mt) can not be equal to zero
- Hence, Â Â Â Â Â Â Â Â Â Â Â m^2 = 0
                   m = 0 , 0 - (repeated roots)
- The complimentary function for repeated roots is:
                  y_c = (C1 + C2*x)*e^(m*t)
                  y_c = C1 + C2*x Â
- Evaluate @ y(0) = 2
                  2 = C1 + C2*0
                  C1 = 2
-Evaluate @ y'(0) = 10
                  y'(t) = C2 = 10
Hence, Â Â Â Â Â Â Â Â Â Â Â Â y_c = 2 + 10*x